本文共 7433 字,大约阅读时间需要 24 分钟。
Some Conclusions about Python Programming
Last night, I start to learn the python for deep learning research. It really confused me at the beginning. So, here is some conclusions about the hard beginning progress. If you have some more excellent solutions, please let us know. Thank you.
1. The first problem I met is how to load images using python and change the image format to some specific requirements ?
here is what I searched from online: . I think its a goog tutorial about this problem.
1 一、matplotlib 2 1. 显示图片 3 复制代码 4 import matplotlib.pyplot as plt # plt 用于显示图片 5 import matplotlib.image as mpimg # mpimg 用于读取图片 6 import numpy as np 7 8 lena = mpimg.imread('lena.png') # 读取和代码处于同一目录下的 lena.png 9 # 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理 10 lena.shape #(512, 512, 3) 11 12 plt.imshow(lena) # 显示图片 13 plt.axis('off') # 不显示坐标轴 14 plt.show() 15 复制代码 16 2. 显示某个通道 17 复制代码 18 # 显示图片的第一个通道 19 lena_1 = lena[:,:,0] 20 plt.imshow('lena_1') 21 plt.show() 22 # 此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数,有如下几种添加方法: 23 plt.imshow('lena_1', cmap='Greys_r') 24 plt.show() 25 26 img = plt.imshow('lena_1') 27 img.set_cmap('gray') # 'hot' 是热量图 28 plt.show() 29 30 复制代码 31 3. 将 RGB 转为灰度图 32 matplotlib 中没有合适的函数可以将 RGB 图转换为灰度图,可以根据公式自定义一个: 33 34 复制代码 35 def rgb2gray(rgb): 36 return np.dot(rgb[...,:3], [0.299, 0.587, 0.114]) 37 38 gray = rgb2gray(lena) 39 # 也可以用 plt.imshow(gray, cmap = plt.get_cmap('gray')) 40 plt.imshow(gray, cmap='Greys_r') 41 plt.axis('off') 42 plt.show() 43 复制代码 44 4. 对图像进行放缩 45 这里要用到 scipy 46 47 复制代码 48 from scipy import misc 49 lena_new_sz = misc.imresize(lena, 0.5) # 第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸 50 plt.imshow(lena_new_sz) 51 plt.axis('off') 52 plt.show() 53 复制代码 54 5. 保存图像 55 5.1 保存 matplotlib 画出的图像 56 57 该方法适用于保存任何 matplotlib 画出的图像,相当于一个 screencapture。 58 59 plt.imshow(lena_new_sz) 60 plt.axis('off') 61 plt.savefig('lena_new_sz.png') 62 5.2 将 array 保存为图像 63 64 from scipy import misc 65 misc.imsave('lena_new_sz.png', lena_new_sz) 66 5.3 直接保存 array 67 68 读取之后还是可以按照前面显示数组的方法对图像进行显示,这种方法完全不会对图像质量造成损失 69 70 np.save('lena_new_sz', lena_new_sz) # 会在保存的名字后面自动加上.npy 71 img = np.load('lena_new_sz.npy') # 读取前面保存的数组 72 73 74 75 76 二、PIL 77 1. 显示图片 78 from PIL import Image 79 im = Image.open('lena.png') 80 im.show() 81 2. 将 PIL Image 图片转换为 numpy 数组 82 im_array = np.array(im) 83 # 也可以用 np.asarray(im) 区别是 np.array() 是深拷贝,np.asarray() 是浅拷贝 84 3. 保存 PIL 图片 85 直接调用 Image 类的 save 方法 86 87 from PIL import Image 88 I = Image.open('lena.png') 89 I.save('new_lena.png') 90 4. 将 numpy 数组转换为 PIL 图片 91 这里采用 matplotlib.image 读入图片数组,注意这里读入的数组是 float32 型的,范围是 0-1,而 PIL.Image 数据是 uinit8 型的,范围是0-255,所以要进行转换: 92 93 import matplotlib.image as mpimg 94 from PIL import Image 95 lena = mpimg.imread('lena.png') # 这里读入的数据是 float32 型的,范围是0-1 96 im = Image.fromarray(np.uinit8(lena*255)) 97 im.show() 98 5. RGB 转换为灰度图 99 from PIL import Image100 I = Image.open('lena.png')101 I.show()102 L = I.convert('L')103 L.show()
2. TypeError: mat is not a numpy array, neither a scalar
Today I use cv2 to load one image, but it shown me the error like this :
==>> Loading Image Names
==>> Epoch ID is 0 ======>> deal with video ID 0 ==>> BasketballTraceback (most recent call last): File "./xxx.py", line 160, in <module> cv2.imshow("candidateRegion", image)TypeError: mat is not a numpy array, neither a scalar-------------------------------------------------------------------------------------------------------------------
So, how to solve this issue ?
I found it all depends on which methods you use to load the image.
for example, you may use cv2, PIL, matplotlib or something else.
But, you can only use cv2 for some specific operation later. Here is an example:
Then, this problem can be avoided. Just try to transform the type of the loaded image, i.e. im_array
=
np.array(im) or directly
utilize the cv2 approach to load the image.
Finally, I want to say that: I love cv2.
3. When you copy a part of python code from other files, you may find this error:
wangxiao@AHU:~/Documents/files$ python ./run_train_Visual_Tracking_v2.py
File "./run_train_Visual_Tracking_v2.py", line 149 history_vector = np.zeros([20]) ^IndentationError: unindent does not match any outer indentation level
But you sure that: this code do not have any problem ! but it still shown you this fucking error !
This is caused by the alignment issue in python: the mixture usage of "space" and "Tab" !
Just select those code and align it using Tab, first move to most left to reduce the "space" and move it to the right location.
It will be OK, trust me.
4. Compute IOU of two BBox using python:
5. Shut down the warning of python code.
==>> add these two lines at the beginning of your code.
6. 打开 txt 文档,并且读取对应行的 txt 内容记录:
path = '/path to your txt files /xxx.txt'
txtfiles = [ ]
for line in open(path):
txtfiles.append(line)
## 此时,我们已经将 txt 文件中的内容转移到了 list txtfiles 当中。我们可以通过 txtfiles[i] 的方式来访问某一行的记录。
for example: print(txtfiles[0]) ## 返回第一行的文件记录。
7. :为什么有时候需要 from __future__ import division?
参考博文:http://blog.csdn.net/langb2014/article/details/53305246
有如下的解释:
8. How to understand the defaultdict in python ?
As discussed in http://www.jb51.net/article/115578.htm
we can see a example like following:
9. the use of iter() in python ?
==>> Python 中的迭代器用起来非常灵巧,不仅可以迭代序列,也可以迭代表现出序列行为的对象,例如字典的键、一个文件的行,等等。迭代器就是有一个next()方法的对象,而不是通过索引来计数。当使用一个循环机制需要下一个项时,调用迭代器的next()方法,迭代完后引发一个StopIteration异常。 但是迭代器只能向后移动、不能回到开始、再次迭代只能创建另一个新的迭代对象。
10. we often see "@property" in python files , what does it used for ?
here are some reference:
1. http://python.jobbole.com/80955/
2. https://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001386820062641f3bcc60a4b164f8d91df476445697b9e000
3. http://www.jb51.net/article/65052.htm
4. http://python.jobbole.com/81967/?utm_source=blog.jobbole.com&utm_medium=relatedPosts
Generally speaking, this function can be used as the followings:
1. 将它作为一个方法的装饰器来使用。
########################################################################class Person(object): """""" #---------------------------------------------------------------------- def __init__(self, first_name, last_name): """Constructor""" self.first_name = first_name self.last_name = last_name #---------------------------------------------------------------------- @property def full_name(self): """ Return the full name """ return "%s %s" % (self.first_name, self.last_name)
>>> person = Person("Mike", "Driscoll")>>> person.full_name'Mike Driscoll'>>> person.first_name'Mike'>>> person.full_name = "Jackalope"Traceback (most recent call last): File "", line 1, in AttributeError: can't set attribute
因为我们将方法变成了属性,我们可以使用正常的点符号访问它。但是,如果我们试图将该属性设为其他值,我们会引发一个AttributeError错误.
@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。
11. ipython notebook error: Unsupported nbformat version 4
==>> error: 2017-08-16 10:28:29.718 [NotebookApp] WARNING | Unreadable Notebook: ~~/refer-master/pyEvalDemo.ipynb Unsupported nbformat version 4
sudo apt-get install ipython notebook sudo pip install notebook --upgrade